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In this paper, the Fitzhugh-Nagumo �FHN� equations and a modified FHN �MFHN� are considered. For the
modified version, the recovery variable v has three different time scales. By considering different parameters
in the local dynamics of the MFHN equations, it is observed that the phenomenon of reflection and annihilation
at an impermeable boundary is observed just as in the Beeler-Reuter model. The interaction of spirals obtained
with the FHN, MFHN, and Beeler-Reuter model, and an obstacle is also considered. The phenomenon of
reflection of the spiral wave at a boundary changes when the boundary becomes an obstacle. Four properties
for attachment of a spiral wave to an obstacle are presented in this work.
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I. INTRODUCTION

The study of spiral waves in excitable media modeled
with reaction diffusion equations �1–6� is an important re-
search area �1,7,8�. Spiral waves appear in chemical reac-
tions, in models of the electrical activity of the heart as well
as the spreading of depression waves in the chicken retina
�1–6�. The study of the interaction between spiral waves and
impermeable obstacles �9–14� is a significant problem in car-
diac physiology. When a spiral wave attaches to an obstacle,
the irregular polymorphic electrical activity ends and a peri-
odic monomorphic activity emerges �10,14,15�. This transi-
tion is clinically important because as it has been shown
fibrillationlike activity changes to a tachycardia regime �15�.
Therefore, the understanding of the interaction of a spiral
wave in the meandering regime with an obstacle is an impor-
tant problem.

The interaction between spiral waves and obstacles has
been experimentally and computationally studied by differ-
ent researchers �9,10,12,13�. Shajahan et al. �12� used the
Luo-Rudy and Panfilov models to study the transition of
spiral turbulence to a simple rotating spiral wave due to
the presence of an obstacle; from their experimental work on
the interaction of a spiral wave with obstacles, Ikeda et al.
�10� concluded that a spiral wave always attaches to an ob-
stacle of minimal size; Panfilov and Keener studied the in-
teraction of successive wave fronts interacting with an ob-
stacle and showed that this could be a mechanism for spiral
wave initiation �11�; Comtois and Vinet �13� studied the par-
tial detachment of a spiral wave at an obstacle in a two-
dimensional annulus. Azene et al. �9� carried out a computa-
tional study of the attachment and detachment of wave fronts
to obstacles based on the Luo-Rudy model. Olmos and Shiz-
gal �16� carried out a study of the reflection and annihilation
of spiral waves at a domain boundary using the Beeler-
Reuter �BR� equations, a model for ventricular cardiac cells.
They considered spiral waves in the meandering regime, par-
ticularly when the petals lie on a straight line, that is, the R�

regime. The aim was to understand the interaction of spiral
waves in a meandering regime with a domain boundary by
approximating the meandering regime with the R� regime
near to the boundary. The spiral-wave boundary interaction
not in the R� regime is complex �16�. Even though the do-
main boundary can be seen as a large obstacle, the interac-
tion spiral-wave boundary is different than interaction spiral-
wave obstacle as will be shown in this work.

The interaction between a meandering spiral wave and an
obstacle has not been previously considered. Such interac-
tions can be very complex �16,17� and the determination of
the conditions for which a meandering spiral wave will at-
tach to an obstacle is an important endeavor. Shajahan et al.
�12� considered the effect of the size and the location of an
obstacle on the transition of spiral turbulence into rotating
spirals. However, the actual mechanism by which this tran-
sition was not considered.

In order to reduce the computational cost in the simula-
tions and to preserve properties of complex models, modifi-
cations of the Fitzhugh-Nagumo �FHN� equations or simpli-
fications of more complex models have been considered
�11,12,17–21�. Among these models are the Panfilov and
Keener model �22�; the Bernus et al. model �18� which is a
simplification of the Priebe-Beuckelmann model �19�; or the
Ten-Tusscher and Panfilov model �20� which is a simplifica-
tion of the model presented by Ten-Tusscher and Panfilov
�21�. The Bueno-Orovio-Cherry-Fenton minimal model �23�
is designed to mimic the behavior of complex models with a
minimum number of variables.

In �16�, the phenomenon of annihilation of spiral waves at
a boundary studied with the BR dynamics in the R� regime
was not replicated with the FHN model �16�. In this paper,
we employ a modified version of the FHN equations in order
to obtain annihilation and reflection of a spiral wave at a
boundary in the R� regime analogous to what was observed
in �16�. We explain why the modified FHN model, a variant
of the Panfilov and Keener model �22�, shows both types of
behaviors. We show that the size and geometry of the ob-
stacle, excitability of the medium, ratio of the area to be
excited and length of the front near the trajectory of the tip,
control the attachment of a spiral wave to the obstacle. The*olmos@gauss.mat.uson.mx
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results obtained in this study can be applied to more general
models because the ideas are based on arguments of excit-
ability and recovery properties of the medium. These results
can be also used to determine, for a given conductivity of the
medium, the size and geometry of the obstacle that maxi-
mizes the attachment possibility. In Sec. II, the model equa-
tions used in the numerical experiments are presented. In
Sec. III, a description of the numerical method used is pro-
vided. Numerical studies and results are given in Sec. IV. In
Sec. IV A the dynamics of a spiral wave with the modified
FHN equations are presented and a study of the interaction
of a spiral wave with a boundary is also shown. In Secs.
IV B and IV C, the interaction between a spiral wave and an
obstacle with the FHN as well as the modified FHN equa-
tions is considered. In Sec. IV B it is also shown for FHN the
difference of considering the interaction of a spiral and an
obstacle or a boundary. We also discuss the conditions that
allow the attachment of a meandering spiral wave to an ob-
stacle. Finally, a summary of the results and conclusions is
presented in Sec. V.

II. MODEL EQUATIONS

We consider a reaction-diffusion model with local dynam-
ics defined by a modified version of the Barkley model �24�,
that is,

�u

�t
= D�2u +

1

�
u�1 − u��u − uth� ,

�v
�t

= ��u,v��u − v� , �1�

where D=1 is the diffusion coefficient, uth= �v+b� /a, a, b,
and � are dimensionless parameters and � is a function of u
and v. When � is equal 1, we have the traditional FHN equa-
tion. For the modified FHN �MFHN� model, � varies with u
and v. Equation �1� is similar to the one studied by Panfilov
and Keener �22,25�, in the sense of that the recovery variable
v has different time scales. The value of � is taken as �1 if
u�0.2 and v�0.2; �=�2 if u�0.2 and v� �0.05,0.2� and
�=�3 otherwise. The choice of � in these regions does not
modify the speed of the wave compared to the original FHN
equation provided that the value of v at the front of the wave
is less than 0.05. In this work, �2=5 and �3=1, and we focus
on the effect of �1 on the local dynamics of v. The effect of
the different values of �1 on the dynamics of v is shown in
Fig. 1, where the profiles of u and v for a propagating pulse
in one dimension are shown for a fixed value of t. In the
figure, the profiles with the FHN model, i.e., Equation �1�
with �=1 and the MFHN with �1=0.3, �1=0.6 are com-
pared. The profiles of u for the three cases are indistinguish-
able from each other and are shown by the gray curve
�Fig. 1�. The profiles for v are shown for the FHN model
�solid thin curve� and MFHN with �1=0.6 �dashed� and
�1=0.3 �bold�. In Eq. �1�, the larger is �1, the shorter is the
refractory time of the medium. The inactivation process, con-
trolled by �3, occurs on a faster time scale than the reactiva-
tion process, controlled by �1 and �2 �Fig. 1�. Therefore, the

MFHN model simulates the effects of the variables h and j
for inactivation and reactivation of the sodium current in the
BR model �26�.

In this paper, we focus our studies on spiral waves in the
R� case, i.e., when the petals of the meandering tip trajectory
lie on a straight line as in �16�. The R� case is of great
importance because it helps to understand the interaction of a
spiral wave in the meandering regime and an unexcitable
object. For the FHN equations, the values a=0.63, b=0.05,
and �=0.02 give the R� case. For the MFHN model,
�=0.02 and b=0.01 implies that for �1=0.6 and �1=0.65 the
values of a=0.5085 and a=0.52, respectively, give tip trajec-
tories in the R� regime.

III. NUMERICAL METHODS

The solution of Eq. �1� is obtained with the pseudospec-
tral methods based on Chebyshev polynomials as
described in �27�. The domain considered is the square
�= �−10,10�� �−10,10�. In each dimension, the domain
was divided into Ni overlapped subdomains of the same
length. Each subdomain has Nch Chebyshev-Gauss-Lobatto
collocation points �27�. The subdomains have in common
two points giving a total of N= �Nch−2�Ns+2 points in each
dimension �27�. The resulting equations were integrated in
time using a second order Runge-Kutta scheme. In this work,
Ni=40 and Nch=10 giving a total of 322 points in each di-
mension and the integration time step 	t=0.0001 is used.

In order to model an obstacle, no flux boundary condi-
tions are imposed, as done in �11,12�. In Fig. 2, we illustrate
the model of an obstacle �in black� in two dimensions and
the application of boundary conditions. The numerical meth-
ods used require that the obstacle has a rectangular shape and
boundary coinciding with an extremum of a subdomain as
shown in Fig. 2.

Different obstacle or domain geometries can be modeled
with other methods such as the one proposed by Bueno-
Orovio et al. �28�. However, one of the advantages of the
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FIG. 1. Solutions u�x , t��, v�x , t�� at a time t� for the FHN and
MFHN equations in one dimension. u�x , t�� is the same for all the
cases and is shown in gray. v�x , t�� for the FHN �thin solid� and for
MFHN with �1=0.6 �dashed� and �1=0.3 �bold�.

DANIEL OLMOS PHYSICAL REVIEW E 81, 041924 �2010�

041924-2



method presented in this work is that the numerical solution
gives a very good approximation to the converged solution
with only 322 points in each dimension as discussed in �27�.
The accuracy of the numerical solution is particularly impor-
tant near the obstacle due to the spiral wave-obstacle inter-
action �16�. The method in �28� might not be suitable to
study such interaction due to the presence of a neighborhood
of width 
 at the boundary of the obstacle, which can be a
significant source of error for the solution near the obstacle.

Tip trajectories with incident angle �i with respect to a
boundary were considered as in �16�. In order to generate a
spiral wave with incident angle �i for the FHN and MFHN
models, an initial solitary pulse is generated with the initial
condition of the form

u�x,y� = �1 + exp�k��y + �y� − r1���−2

− �1 + exp�k��y + �y� − r2���−2, �2�

v�x ,y�=0, and where u is taken as zero for �x�−y. After
some integration time, a free end on this solitary pulse is
induced in order to generate a spiral wave. At the time ts and
for 0.1 units of time, the solution is redefined in the region
�y�x−x0 as u=0 and v=0.25. Initially, in Eq. �2� � was
taken as zero, r1=9.8, r2=9, ts=1.2, k=4, and x0=0, for the
case of �1=0.6. With these values, a spiral wave in the R�

regime was generated such that the incident angle was
�i=61.5°. For a different incident angle �i, the value of � in
Eq. �2� was taken as �=tan���i−61.5� /180� and the values
of r1, r2, ts, and x0 were taken such that the spiral wave was
inside the domain and initial boundary effects were avoided,
analogous to the procedure used for the BR model �16�.

The tip trajectories for the FHN and the MFHN models
were found with the intersection of level curves with the
method described by Barkley �24�, whereas for the Beeler-
Reuter model the point with zero normal velocity as dis-
cussed by Fenton et al. �1�.

IV. NUMERICAL RESULTS

In this section, we present results obtained with the FHN,
the MFHN, and the BR equations. We consider first the phe-
nomenon of reflection and annihilation of a spiral wave at a
boundary with the MFHN model and then proceed to study
the interaction between a spiral wave obtained with the three
models and an obstacle.

A. Reflection and annihilation with the MFHN model

We first consider the MFHN equations with different
values of �1 and study the effects on the spatial dynamics.
Figures 3�A�–3�D� show different tip trajectories in the R�

regime obtained with different values of �1=0.45, 0.6, 0.65,
and 0.75, respectively. The smaller the value of �1, the larger
is the recovery time of the medium, and in Fig. 3 a larger
recovery time is associated with larger arcs. However, a bet-
ter measure of the effect of �1 on the spatial dynamics is
given by �=� /dp, where � is the distance between two pet-
als �Fig. 3� and dp is the diameter of a petal, which is given
by the largest distance between points lying on a petal. The
quantity � is a measure of the relative size between the petals
and the arcs. In Figs. 3�A�–3�D�, the values of � are 1.64,
0.75, 0.59, and 0.37, and the values of dp are 1.75, 1.43,
1.38, and 1.2, respectively. This implies that � is equal to
0.94, 0.52, 0.43, and 0.31 for the trajectories A–D in Fig. 3,
respectively. A larger value of � implies that there is a higher
probability of hitting a boundary with an arc, and therefore
increasing the probability of annihilation of the spiral wave
at the boundary �16�. An increase in � means that � in-
creased faster than dp and where, by using scaling argu-
ments, it is equivalent to consider a fixed value of dp and an
increase in �. Physically, this corresponds to have a longer
recovery period �larger �� for a fixed dp.

The physiological parameters for controlling the value of
� are model dependent and are not the primary interest in
this work. However, the value of � is independent of the
model considered. In �16�, the values of � and dp for the BR
model, for which annihilation was observed, are 5.0 and 4.51
units of length respectively, giving �=1.10. For the FHN
equations �16�, where no annihilation was observed, �=0
and dp=1.64 units, gives �=0. Therefore, a value �=�� ex-
ists for the R� regime, such that below �� no annihilation is
present and above �� annihilation is possible. The different
scenarios by which annihilation and reflection are observed
for a fixed incident angle was discussed in detail in �16� with
the BR model.

Therefore, we study the interaction between a spiral wave
and the boundary of a square domain as in �16�. With the
FHN model, the phenomenon of annihilation of a spiral
wave at a boundary was not observed �16�. Therefore, we
considered the MFHN with �1=0.6 and �1=0.65. For each
value of �1 we followed the same procedure as in �16� where

INi
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Obstacle

IR

y

x

FIG. 2. Illustration of the modeling of an obstacle with no flux
at the boundary of the obstacle. In the x direction it is shown that
the obstacle starts at the end of the interval IL and ends at the
beginning of the subinterval IR. The same rule follows in the y
direction.
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FIG. 3. Tip trajectories in the R� regime obtained with the
MFHN equations for different values of �1: �A� 0.45, �B� 0.6, �C�
0.65, and �D� 0.75. � is the distance between petals and dp is the
diameter of a petal given by the largest distance between points
lying on the petal.
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we calculated the fraction FA��i� of spiral waves that annihi-
lated at the boundary for a fixed incident angle �i. For each
angle �i we followed the same procedure as in �16� in order
to obtain all the possible interactions of the spiral wave with
the boundary. In order to obtain the fraction of spirals that
disappeared at the boundary, we considered from 43 to 73
runs for each angle.

The results for the MFHN with �1=0.6 ��� and
�1=0.65 �asterisks� are shown in Fig. 4 where FA��i� is plot-
ted versus �i. From Fig. 4, it is shown that annihilation of the
spiral wave is observed when �1=0.6 and �i� �70,110�,
whereas for �1=0.65 annihilation is observed for
�i� �80,90�. The increase in the probability of the annihila-
tion of a spiral wave at a boundary is related to the increase
in the value of �. This corresponds to an increase in the time
where the medium is in refractory state. This is consistent
with the results in Fig. 3, where a larger value of � increases
the probability of the annihilation of a spiral wave at a
boundary.

For the MFHN model, it is possible to control the values
of � and dp and remain in the R� regime. These parameters
are not that easily controlled in the BR or more complex
models. This advantage of the MFHN model permits the
study of interaction between a spiral wave and a boundary
while in the R� regime for different values of � and dp.

B. Interaction of spirals with obstacles
for the FHN model

The effect of annihilation and reflection of a spiral wave
at a domain boundary can be considered when the boundary
becomes an obstacle. In cardiac physiology, a vein or is-
chemic tissue can be considered as obstacles �12�. When
considering obstacles, the effect of reflection is the same for
a boundary and for the obstacle. However, the effect of an-
nihilation at a boundary becomes attachment of the spiral
wave to the obstacle.

In this section we consider the interaction of a spiral wave
obtained with the FHN equations and an obstacle. In both,

the x and y directions, the obstacle started at the end of the
subdomain Ni=17 and ended at the beginning of the sub-
interval Ni=24, i.e., the obstacle is given by the square
�1= ��x ,y� /−1.46�x�1.46,−1.46�y�1.46�. In order to
get a spiral interacting with the obstacle, we initially carried
out simulations in the R� regime with no obstacles. After
that, obstacles were placed in a position such that the inter-
action happened.

In �16�, it was shown that spiral waves generated with the
FHN model were reflected from the boundary independently
of the incident angle �i. However, a different scenario is
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FIG. 4. Fraction of the trajectories that were absorbed by the
boundary �PA� as a function of the incidence angle �i for the MFHN
equations with �1=0.6 ��� and �1=0.65 �asterisks�. The angle �i is
in degrees.
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FIG. 5. �Color online� Interaction between a spiral wave ob-
tained with the FHN equations and an obstacle for t=89.2, 91.6,
92.8, 93.2, 93.6, and 97.2 units of time from �A� to �F�, respec-
tively. The thick curves labeled as wavefront and waveback in
frame �D� are given by the level curve u=0.1. The different colored
regions represent different levels of refractoriness in the medium
and are labeled in �B�. The region v� �0,0.05�, represents the com-
pletely and almost completely recovered medium; v� �0.05,0.2�, is
the region with partially recovered medium; v�0.2, is the region
with the medium in completely refractory stage. The black dot filled
in white is the location of the tip of the spiral wave at the specific
time. In �A�, the closest petal to the obstacle it was deformed due to
a gain in curvature due to boundary effects �16�; ��B�–�D�� the tip of
the spiral wave is very close to the obstacle; in �C� the vertical
dashed line represents an imaginary boundary; �E� the tip of the
spiral hits the obstacle; �F� the spiral wave is attached to the ob-
stacle. �See text for details.� The initial condition is given by Eq.
�2�, with x0=−5, r1=9.8, r2=9, �=−0.5, and ts=2.5.
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obtained when the spiral interacts with a square obstacle as
shown in Fig. 5. In the Figure, the interaction of the spiral
wave with the obstacle for six different integration times is
shown. The black square is the obstacle and the black dot
filled in white gives the location of the tip; the bold line
represents the level curve u=0.1, which gives the location of
the wave front and the wave back of the spiral wave �labels
on Fig. 5�D��; the different colored regions represent differ-
ent levels of refractoriness of the medium given by the v
variable; the region v�0.05 �Fig. 5�B�� means that the me-
dium is recovered or almost recovered and an AP can be
propagated easily; the region v� �0.05,0.2� �Fig. 5�B��, im-
plies that the medium is in refractory state but almost ready
to be recovered. Propagation in this region is difficult. Fi-
nally, when v�0.2 �Fig. 5�B��, the medium is not recovered
at all and propagation in this region cannot occur.

From Figs. 5�A�–5�C�, it is observed that the tip of the
spiral gets really close to the obstacle. In Fig. 5�D�, the tip of
the spiral hits the obstacle, and finally in Fig. 5�E�, the spiral
wave attaches to the obstacle. The attachment of the spiral
wave appears not to be consistent with �16�, where for FHN,
reflection of the spiral at a boundary was the only behavior
obtained. In Fig. 5, we provide an explanation to clarify the
situation. Figure 5�C� shows a vertical dashed line tangent to
the left face of the obstacle. This line represents an imagi-
nary boundary and can be thought that the spiral wave will
hit this imaginary boundary. If we would have a boundary
where the imaginary boundary is traced, then reflection of
the spiral wave occurs.

The process of attachment of the spiral to the obstacle is
as follows. Initially, we can think of the spiral wave moving
toward the left face of the obstacle. In Fig. 5, it is shown that
the unit of trajectory �16� closer to the obstacle is a distorted
version of the units of trajectories that are far from the ob-
stacle and the boundary domain. A unit of trajectory is the
trajectory traced by the tip of the spiral in one rotation and
consists of an arc and a petal. The change in shape is due to
a gain in curvature of the tip trajectory due to the presence of
a boundary �left side of the obstacle� as described in �17� and
shown in Fig. 5�A�. In Fig. 5�B�, the tip of the spiral wave is
located at an arc which means the medium is not completely
recovered, so the tip traces a low curvature trajectory. In Fig.
5�C�, the tip of the spiral gets close to the obstacle and more-
over, part of the spiral wave has crossed the dotted line. In
this case, the obstacle does not have any boundary effect on
the tip trajectory and the spiral wave moves as if there is no
boundary present. The wave propagates freely in the direc-
tion of the obstacle, and the medium ahead of the wave front
next to the tip recovers completely facilitating the propaga-
tion of the spiral wave �Fig. 5�C��. From the same figure, it is
evident that the tip of the spiral wave is ready to trace an-
other petal since the medium ahead of the front close to the
tip is completely recovered. However, just before tracing a
petal, the tip of the spiral wave encounters a corner of the
obstacle �Fig. 5�D��; in this case, the spiral wave does not
have boundary effects near the tip as all these effects should
have come from the imaginary boundary shown in Fig. 5�C�.
Finally, in Figs. 5�E� and 5�F�, attachment to the obstacle is
obtained.

It is important to note that attachment to the obstacle was
possible due to the shape of the obstacle at the site of inter-

action, which was a corner. From this, it follows that one of
the conditions to observe attachment is the shape of the ob-
stacle at the site of collision. From Fig. 5, it is clear that
because the spiral wave has hit the obstacle at a corner, at-
tachment was observed. If the obstacle is large and the inter-
action of the spiral wave hits the obstacle at a face, then
reflection would have occurred. A second condition needed
to observe attachment is the size of the obstacle. A very
small obstacle will imply that attachment is not possible as
the spiral tip would complete a cycle around the obstacle in
a time shorter than the refractory period of the tissue. There-
fore, a minimum size of the obstacle is needed �29�. Two
more properties that will give conditions for attachment to
the obstacle will be discussed in detail in the next section in
connection with the MFHN equations.

C. Interaction of spirals with obstacles for the MFHN model

For this model, it follows from the results in Sec. IV A
that attachment of a spiral wave to an obstacle without cor-
ners is expected to occur. We now focus on the interaction
of the region near the tip of a spiral wave generated with the
MFHN equations ��1=0.6� and an obstacle. In particular, we
consider that such interaction takes place at the lower face of
the obstacle as shown in Fig. 6. The angle of incidence is
�i=52.8°, for which reflection of the spiral wave is expected
as shown in Fig. 4 if the interaction takes place at a bound-
ary.

In Fig. 6, we summarize the results obtained from the
interaction between the spiral wave and two different ob-
stacles. In the figure, it is shown the interaction with the first
and second obstacle in the left �Figs. 6�A�–6�C�� and right
�Figs. 6�D� and 6�E�� columns, respectively. In the
simulations, we fixed the size and position of the obstacle in
the y direction with the same values as in the previous
subsection. However, in the x direction, we varied the
size of the obstacle by fixing the right position of
the obstacle at the beginning of the subinterval Ni=26 and
varying the left position where the obstacle begins. In
the left and right columns of Fig. 6, the obstacle starts
at the end of the subinterval Ni=15 and 16, respectively.
Therefore, the obstacles are given by the squares
�1= ��x ,y� /−2.46�x�2.46,−1.46�y�1.46� and �2
= ��x ,y� /−1.96�x�2.46,−1.46�y�1.46� for the left and
right columns in Fig. 6, respectively.

For each of the two obstacles considered, a spiral wave
was generated in such a way that the tip traces the same
trajectory until it hits the obstacle. It is important to mention
that for each of the results found for the obstacles that started
at the beginning of the subintervals Ni=15 and 16, different
runs were taken with different values at which the obstacle
ended in the y direction �Ni�24�. The phenomena observed
were the same, as for those where the obstacle ended at the
beginning of the subinterval Ni=24. With this procedure, we
remove the dependence of the length of the lower face and
focus only on the location of the site of interaction.

In Fig. 6, the solutions for the two different obstacles are
shown for three different integration times, such that the
frame pairs �A,D�, �B,E�, and �C,F� are shown for exactly the
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same integration times. In this way, it is possible to observe
the qualitative differences in the dynamics at a fixed time. In
Figs. 6�A�–6�C� it is observed that the spiral wave gets re-
flected whereas for the case of the shortened obstacle, shown
in Figs. 6�D�–6�F�, attachment of the spiral wave to the ob-
stacle is observed. In Fig. 6�A�, the part of the spiral close to
the tip of the spiral wave gets close to the lower face of the
obstacle. Due to boundary effects, the tip trajectory gains
more curvature as the area to be excited is less compared to
the case when no obstacle is present. A similar situation oc-
curs for the case of the shortened obstacle �Fig. 6�D��, i.e.,
the tip trajectory changes direction due to the presence of the
obstacle. The effect of gaining curvature due to the presence
of a boundary is discussed in �16,17�.

The important point is that for Fig. 6�D�, the interaction is
closer to the left bottom corner than the case in Fig. 6�A�.

Therefore, the front in Fig. 6�D� arrives at the corner earlier
than the front in Fig. 6�A�. At that point, the area to be
excited by the front in Fig. 6�D� is larger than the area that
the front in Fig. 6�A� has to excite. As a result, the front in
Fig. 6�A� is able to propagate and Fig. 6�B� is obtained.
Finally, in Fig. 6�C�, the front continues propagating and
reflection is observed. From Fig. 6�D�, the area that needs to
be excited has become too large compared to the length of
the front of the spiral close to the tip. Therefore, propagation
fails as the front dies out as shown in consecutive frames in
Figs. 6�E� and 6�F�. As shown in Fig. 6�F�, attachment has
been obtained.

The argument considered in this section to demonstrate
attachment is based on the fact that the front near the tip it is
incapable of propagating because the area that has to be ex-
cited becomes too large for the front. To understand better
this argument, we focus on the propagation of a free end
�Fig. 7�. In the figure, we considered a simulation of the
FHN equations �Eq. �1�, with �=1� with parameters
a=0.52, b=0.05, and �=0.02. With these parameters,
the tip of the spiral wave traces a circular trajectory.
Therefore, an initial pulse was originated on the domain
�−10,10�� �−10,10� with the initial condition given by

u�x,y� = �1 + exp�4��x� − 9.8���−2 − �1 + exp�4��x� − 9���−2,

�3�

where u was redefined as zero for x�0. Therefore, the pulse
travels from left to right inside the domain, and then, for the
time interval t= �2.1,2.2�, the front is redefined as u=0 and
v=0.25 for y�y0 giving a propagating free end. In Fig. 7,
the value of y0 was taken as 8.786 and 8.788 for Figs. 7�A�
and 7�B�, respectively. With this procedure, two different
free ends with initial front length of 1.214 and 1.212 units of
distance are generated and shown in Figs. 7�A� and 7�B�,
respectively. In Fig. 7�A�, are shown nine snapshots of the
level curve u=0.27 for different integration times. The figure
shows that the length of the front �which initially was 1.214�
gets reduced and for the times t2 to t4, the length of this front
is maintained. The free end shown in t5 starts growing until
t9, where it follows that the free end will evolve into a spiral
wave.
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FIG. 6. �Color online� Interaction between a spiral wave ob-
tained with the MFHN equations and obstacles for t1=40.25,
t2=40.95, and t3=41.3 units of time. ��A�–�C�� The obstacle in the
x direction starts at the end of the subinterval Ni=15 and ends at the
beginning of the subinterval Ni=26; ��D�–�F�� the obstacle in the x
direction starts at the end of the subinterval Ni=16 and ends at the
beginning of the subinterval Ni=26. Plot pairs �A,D�, �B,E�, and
�C,F� correspond to t= t1, t2, and t= t3, respectively. �See text for
explanation.� The initial condition is given by Eq. �2�, with
x0=−6, r1=11, r2=9, �=−0.262, and ts=1.4. The obstacle was
placed at time t�=26.
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FIG. 7. Propagating front with a free end generated with the
FHN equations. �A� When the length of the propagating front is
above a critical value, the free end propagates in the medium and a
spiral is formed. This case corresponds to reflection; �B� the length
of the propagating front is below the critical value, and the free end
dies out. This corresponds to the case of attachment.
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The results when the value of y0 is changed to 8.788 are
shown in Fig. 7�B�. In this case, the length of the initial front
is 1.212 units of distance. In Fig. 7�B�, level curves of
u=0.27 for three different integration times are shown. By
contrast to the previous case, it is shown that the initial free
end shrinks and disappears from the domain.

It follows from Fig. 7 that if we have a pulse with a free
end propagating in a medium with a fixed excitability ahead
of this propagating pulse, then, there is a relationship be-
tween the length of the wave front and the fixed area to be
excited. When the length of the front of this pulse has a
critical length l�, then, below this critical length the pulse
will disappear and above this value the free end will remain
inside the domain and generate a spiral wave. This property
has been considered previously indirectly in computational
and experimental studies where a pulse has to excite an area
after it has passed across an isthmus �30,31�.

Based on the studies presented in this section, and the
argument from Fig. 7, it is clear that attachment of a spiral
wave to an obstacle depends on the length of the front near
the tip of the spiral wave and the area to be excited by this
front. This argument for attachment is the third property that
should be considered in order to obtain attachment of a spiral
wave to an obstacle.

The last property of the four mentioned in this work is
related to the third property just discussed. This property is
the excitability of the medium where the front has to propa-
gate. Clearly, if we have a fixed length of the front and a
fixed area to be excited, we also have to take into account the
degree of excitability of the area to be excited or the strength
of the pulse to propagate. This last property is explained in
�32,33� with a study of propagating pulses with a free end. If
the excitability of the medium is high, then the propagating
pulse will evolve into a spiral wave, whereas if it is low, then
the pulse will shrink and disappear. The excitability of the
medium is responsible for giving the different trajectories of
the tip of the spiral wave, particularly, the R� regime studied
here. It is also responsible for the reflection and annihilation
of a spiral wave at a boundary as seen in �16�.

D. BR model

In this section, we consider the interaction of a spiral
wave in the meandering regime generated with the BR model
�26� and an obstacle. The objective is to show that the prop-
erties obtained for the MFHN equations are sufficiently real-
istic so as to model attachment to an obstacle. We used the
BR model with the parameters gNa=2.37, gNaC=0.003,
ENa=50.0, and gS=0.03 as in �16� to generate spiral
waves in the R� regime. In the simulations, each dimension
was discretized with Ni=180 subintervals and Nc=5
points in each subinterval as in �16�. Two different
obstacle sizes were considered �right and left columns in
Fig. 8�. In both cases, in the y direction, the obstacles
start at the end of the subinterval Ni=20 and end at the be-
ginning of the subinterval Ni=40. In the x direction, the ob-
stacles end at the beginning of the subinterval Ni=130 and
start at the end of the subintervals Ni=80 and Ni=84, respec-
tively. Therefore, the obstacles are given by the squares

�1= ��x ,y� /−0.95�x�4.12,−7.52�y�−5.73� and �2
= ��x ,y� /−0.51�x�4.12−7.52�y�−5.73� for the left and
right columns in Fig. 8, respectively. In Fig. 8, we plot con-
tour plots of the variable j, which is responsible for the re-
activation of the medium, as done in �16�. When j�20%,
means that the sodium gate is still closed and no action po-
tential can be elicited here. When j�85% means that the
medium is ready or almost ready to accept an action poten-
tial. The rest of the states, 20%� j�40%, 40%� j�70%,
and 70%� j�85% are intermediate stages of the j variable.

A spiral wave was generated as done in �16� with �=0,
c1=40, c2=39, y0=−10, and tg=150 ms. The obstacle was
inserted at t= tg ms. The interaction between the spiral wave
and the obstacles �1 and �2 is shown in Figs. 8�A�–8�F�,
respectively, for three integration times. In Figs. 8�A�–8�C�
reflection of the spiral wave at the obstacle is observed,
whereas in Figs. 8�D�–8�F�, attachment occurs.

From Fig. 8�A�, the front of the spiral wave close to the
tip hits the boundary on the lower face. The short length
wave-front is able to excite the area ahead of it �Figs. 8�B�
and 8�C��. It follows that the front propagates generating a
spiral wave, giving as a result reflection of the spiral at the
obstacle �Fig. 8�C��. A different scenario occurs when the
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FIG. 8. �Color online� Interaction of a spiral wave generated
with the BR model and two different cases of obstacles for
t1=591.92, t2=599.4, and t3=614.36 ms. In �A�–�C� reflection is
observed and; �D�–�F� attachment is observed. Plot pairs �A,D�,
�B,E�, and �C,F� correspond to t= t1, t2, and t= t3, respectively. �See
text for details.�
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length of the obstacle in the positive x direction is decreased,
as shown in Figs. 8�D�–8�F�. Here, the interaction of the
spiral wave takes place closer to the corner than in the pre-
vious case �Figs. 8�A�–8�C��. The same short length wave-
front has to excite now a larger area, as a consequence of
being closer to the corner of the obstacle. The propagating
front is not able to excite this larger area and dies out giving
attachment of the spiral wave to the obstacle �Fig. 8�F��.

V. SUMMARY AND DISCUSSION

Numerical studies of spiral waves obtained with FHN,
MFHN, and BR equations were considered in the present
paper. In �16�, it was shown that a spiral wave in the R�

regime generated with the FHN dynamics does not annihilate
at the boundary. This was due to the fact that the value of �
defined in Sec. IV A was too small and it was not possible to
get an interaction of the trajectory of the tip and the bound-
ary when the tip was located at an arc. However, with the
MFHN equations, it was possible to increase the value of �
such that the probability of hitting the boundary with an arc
was also increased. Therefore, it was possible to obtain an-
nihilation of the spiral wave at the boundary, just as shown
with the BR equations �16�.

The interaction between spiral waves and rectangular ob-
stacles �Secs. IV B and IV C� was also studied in this work.
The case of annihilation of a spiral wave at the boundary was
not observed for the FHN equations. However, when the
boundary was changed to an obstacle �Sec. IV B� attachment
of the spiral to the obstacle was observed. This was because
the spiral wave hits the obstacle at a corner.

When spiral waves generated with the MFHN equations
�Sec. IV C� were considered, the attachment to the obstacle
was anticipated as based on Fig. 4. The length of the lower
face of the obstacle was varied taking a spiral wave that had
an incident angle such that reflection at a domain boundary is
observed and therefore giving an interaction of the spiral
wave at places far and close to one of the corners of the
obstacle. In this experiment, both reflection and attachment
were observed. The attachment occurred because the area to
be excited by the front of the spiral wave close to the tip was
too large, and the front died giving attachment to the ob-
stacle.

It was shown that the same attachment situation observed
for MFHN equations occurred for the BR model �Sec. IV D�.
Therefore, the attachment properties remain valid for spiral
waves based on a physiological model. In the physiological
model it is possible to find which values of the realistic pa-
rameters are responsible for the meandering regime. Based
on this information, it is possible to determine the size and
geometry of the obstacle in such way that it maximizes the

possibility of attachment. However, this issue is out of the
scope of the study presented here.

In the present study, linear trajectories which arise more
commonly in experiments ��1� and references therein� were
not considered. Linear trajectories can be seen as a limiting
case where the size of a petal has gone to zero or to a very
small value, and the length of an arc has reached some finite
value. In this case � tends to infinity or to a very large value.
In this case, attachment is expected.

Four properties for attachment were considered in this
work: the size of the obstacle, the geometry of the obstacle at
the site of interaction, the excitability of the medium where
the front has to propagate, and the ratio of the area to be
excited and the length of the front close to the tip trajectory
responsible of keeping the spiral inside the domain. There-
fore, this work extends the idea of the attachment of a spiral
wave to an obstacle. In �10�, it was experimentally shown
that a spiral wave always attaches to an obstacle of some
minimum size. However, according to the results presented
in this work, the size of the obstacle is not the only property
necessary to obtain attachment.

One of the main limitations of the numerical method con-
sidered in this work is the restriction of the shape and size of
the obstacles to rectangular geometries, which depend on Ni
and Nch. In the simulations, the dimensions of the obstacle
increased or decreased in multiples of Nch. This limitation
did not allow us to study more precisely the transition be-
tween reflection and annihilation of the spiral wave at the
obstacle.

Another limitation in this paper was the restriction to the
R� case. Interaction between meandering spiral waves with
trajectories tracing epitrochoids or hypotrochoids and ob-
stacles are more complex to analyze. Even that it is possible
to approximate such interaction with the R� case, it is not
possible to provide a long time behavior of the dynamics due
to the possible repetitive interactions that are not observed
with the R� case.

Future studies will consider the simulation of the interac-
tion between spiral waves and obstacles with more general
shapes and in more general regimes of a spiral wave, such as
the case of epitrochoids and hypotrocoids.
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